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Flows of incompressible inviscid heavy fluids with free or rigid boundary surfaces are 
considered. For slender streams of fluid, the flow and the free boundaries are repre- 
sented by a number of different asymptotic expansions in powers of the slenderness 
ratio. There are three kinds of outer expansions representing respectively jets, which 
have two free boundaries, wall flows, which have one free and one rigid boundary, 
and channel flows, which have two rigid boundaries. The flow at the junction of two 
or more outer flows is represented by an inner expansion. Previously we constructed 
the three outer expansions and the inner expansion a t  the junction of a wall flow and 
a jet (Keller & Geer 1973). Now we construct the inner expansions a t  the junctions 
of a channel flow and a jet, a channel flow and a wall flow, and a jet and the two wall 
flows into which it splits upon hitting a wall. We also match each inner expansion 
to the adjacent outer expansions. These seven expansions can be combined to solve 
many problems involving flows of slender streams. 

1. Introduction 
Previously we presented a method for analysing slender streams of fluid in steady 

two-dimensional potential flow with gravity acting. It consists in first dividing the 
stream into one or more long portions connected together by short junctions. Each 
long part can have either two free boundaries, one free and one rigid boundary, or 
two rigid boundaries, see figure 1 ; these parts are called jets, wall flows and channel 
flows, respectively. There are junction flows which connect a wall flow and a jet 
(figure 2a),  a channel flow and a jet (figure 2 b ) ,  a channel flow and a wall flow (figure 
2c), a jet and the two wall flows into which it splits upon hitting a wall (figure 2 4 ,  
etc. The method proceeds by finding for each part an asymptotic expansion in powers 
of the slenderness ratio of the stream, and then matching together the expansions in 
adjoining parts. 

The three expansions for the long parts of a stream, called outer expansions, were 
introduced by Keller & Weitz (1952, 1957). They found the leading coefficients in 
these expansions. The remaining coefficients were found by Keller & Geer (1973), to 
be referred to as part 1. In  part 1 the expansions of junction flows, called inner expan- 
sions, were introduced. Also one of them, the inner expansion at  the junction of a 
wall flow and a jet (figure 2a) was found and matched to the adjoining expansions. 
We shall determine the inner expansions of the other three flows shown in figure 2 
and match them to the adjoining expansions. 
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FIGURE 1. The three types of long parts of a stream, which we call outer flows. (a) A jet which 
has two free boundaries. ( b )  A wall flow which has one free boundary and one rigid boundary, 
indicated by a hatched line, given by y = ~ ( z ) .  ( c )  A channel flow which hazr two rigid bound- 
aries y = 7;1(z) and y = ~ ( z )  + ey(z). In  all cases the upper streamline is $ = 0 and the lower 
one is $ = - 1. 

Once these inner expansions have been found, they can be used together with the 
outer expansions to build up rather complicated flows. However, there are cases in 
which additional junction flows are needed. Examples of them are the flow in a channel 
with a corner or with a bifurcation, the flow over a bottom with a step or with a dis- 
continuous change in slope, the impact of a jet on the corner of a wall, etc. Since the 
leading term in each junction flow is affected neither by gravity nor by wall curvature, 
it  may be given by one of the known special flows which have been found by conformal 
mapping. 

The first application of matched asymptotic expansions to problems involving 
free streamlines was probably that of Clarke (1965). He treated a waterfall such as 
that in figure 2 (a),  with a horizontal rigid surface. In  that case the slenderness ratio 
of the stream is just the inverse of the Froude number, so he expanded for large 
Froude number. Subsequent investigations of slender streams have been made 
by Bentwich (1968)) Clarke (1968)) Ackerberg (1968, 1971)) Tuck (1976) and Geer 
(1977a) b). 

Now, before proceeding with our analysis, we shall explain the simple physical 
idea underlying the present theory. It is that in each cross-section of a slender stream 
the velocity is nearly constant and parallel to the stream. In a jet or a wall flow this 
velocity is just that of a freely falling or sliding particle, because the pressure in the 
flow is nearly constant. Then conservation of mass yields the thickness of the stream. 
In a channel flow the thickness is given, so conservation of mass yields the velocity. 
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FIGURE 2. Four types of junctions in the physical plane: (a)  a wall flow becoming a jet; ( b )  a 
channel flow becoming a jet; (c) a channel flow becoming a wall flow; (6) a jet splitting into two 
wall flows upon hitting a wall. The point (a,p) and the streamlines @ = 0 and @ = - 1  are 
shown, as is the dividing streamline @ = - $0 in case (d). 

Thus in the first two cases the flow can be found approximately by solving the ordinary 
differential equations for a falling or sliding particle, while the third case is even 
simpler. As was shown in part 1, these ordinary differential equations are the only 
nonlinear equations which arise in finding the outer expansions. 

I n  $ 2 we formulate the method. Then in $ 3 we determine the leading coefficient 
in the inner expansions of flows b and c shown in figure 2. In  $ 5  4 and 5 we determine 
the subsequent coefficients in these two expansions. In  $ 6  we match them to the 
appropriate outer expansions. In  $ 7  we treat case d of figure 2. Finally, in $ 8  we 
give a summary of our results. We also present figures showing a complicated flow 
which we have calculated by using our method. The flow emerges from a channel, 
flows along a wall, leaves the wall and becomes a falling jet, hits the ground and splits 
into two wall flows, See figure 4. The details of this calculation, as well as other appli- 
cations of our method, will be presented elsewhere. 

2. Formulation of the method 
Let us consider a steady potential flow in the x', y' plane bounded by the stream- 

lines = 0 and @' = - hU. Here h is a typical width of the stream and U is a typical 
value of its velocity. In  this flow z' = x' + iy' is an analytic function of the complex 
potential $'+i@'. This analytic function is defined in the strip - hU < $' < 0, and 

4-2 
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must satisfy suitable conditions a t  $' = 00. In  addition on each part of a fixed 
streamline, i.e. a bounding streamline corresponding to a rigid boundary, z' must lie 
on that boundary. On a free portion of a streamline z' must satisfy the constant 
pressure condition Idz'/d$'l-2+ 2gy' = U2. Here g is the acceleration of gravity. 

In  order to determine z'($' + i$') we first introduce dimensionless variables. Let L 
be a typical length along the stream, and let us define dimensionless quantities by 

J .  Geer and J .  B. KeEler 

Z' = Lz, $' = LU$, $' = hU$, = 2 g L / U 2 ,  E = h/L.  (2.1) 

Here y - 1  is the Froude number of the flow and E is the slenderness ratio of the stream.? 
In  these variables the flow is determined by the analytic function z($ +is$, E), which 
depends explicitly upon E and is defined in the strip - 1 < $ < 0. The corresponding 
boundary conditions are 

Idz/d$l2 = (1 - y Im z)-1 on a free streamline, (2 .2 )  

Imz = q(Rez) on the fixed streamline y = q ( x ) ,  (2 .3 )  
Im z = q(Re z )  + cc(Re z )  on the fixed streamline y = q ( x )  + sC(x). (2 .4)  

We suppose that the strip can be divided into intervals $ j ( ~ )  < $ < $j+l(~), such 
that throughout each interval just one of these conditions applies on each bounding 
streamiine. An interval represents a jet if (2 .2 )  holds on both streamlines, a wall flow 
if (2 .2 )  holds on one streamline and (2 .3 )  or (2 .4 )  holds on the other, and a channel flow 
if (2 .3 )  holds on one and ( 2 . 4 )  on the other. Within each interval we assume that z 
has an (outer) asymptotic expansion in powers of E of the form 

W 

z($ + iE$., 4 z @%A$ + is$>, $,(s, < $ < $,+A@. (2 .5)  
n = O  

The fact that z, depends upon j will be indicated only when it is necessary to do so. 
The outer expansion coefficients zn($) = xn($)+iyn($) were found in part 1 for all 
three cases. 

The outer exptmsions do not hold a t  the endpoints $ i ( ~ )  of the intervals in which 
they are defined. Therefore for # in the neighbourhood of $ j ( ~ )  we assume that z 
can be represented by an inner asymptotic expansion. To write it we choose a point 
z = a+;/? a t  or near the junction in the z plane and denote by $ j (~ )+ i~$ j ( e )  the 
complex potential there: 

Then we introduce the stretched variables 4'' and z" defined by 

z[$&) + iE$j(E), €1 = a + ip. (2 .6 )  

(2 .7 )  

From (2 .6 )  and ( 2 . 7 )  we see that $" = 0 at $ = $ j ( ~ )  and that z" = 0 a t  $" = 0, 
$ = $,(E). Now we write the inner expansion as 

#" = [# - $ j ( ~ ) ] / ~ ,  z"(#" + i$, E) = (z  - a - i/3)/e. 

W 

Z"($"+i$,E) - 2 E%;($"+i$). 
n= 0 

t For a jet, or for flow along a straight wall or in a straight channel, the only choice for L 
is a multiple of U2/2g.  With L = U2/2g we have y = 1 and E = 2gh./U2, so that B-1 is the 
Froude number. Then the stream is slender only at high Froude numbers, which is the case 
treated by Clarke (1 968). However, for flows along curved walls or in curved channels, a flow 
can be slender at any Froude number. 
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FIGUFLE 3. Four junction flows in the plane of the complex potential $ + i@, corresponding to 
the flows shown in the physical plane in figure 2. Each flow is bounded by the streamlines 
@ = 0 and @ = - 1. The point a, /3 in the physical plane corresponds to ( I $ ~ ( E ) ,  - 1) in cases 
(a), ( b )  and (c), and to ($3 (e ) ,  -$O( (s ) )  in case (d ) .  The portion of each streamline which lies on 
a rigid boundary in the physical plane is shown hatched, while the remaining portions denote 
free streamlines. 

The coefficients in (2.8) are analytic functions of $""-ti$ defined in the strip 
- 1 < $ < 0. The boundary conditions which they satisfy can be obtained from 
(2.2)-(2.4) by using (2.7). The conditions and the kind of streamline on which each 
holds are 

(2.9) Idz"/d#"12 = (1 - yp- ~ y y " ' ) - ~ ,  free, 

p+Eyy" = T(a+sz"), fixed y = T ( x ) ,  (2.10) 

(2.11) 

We shall now specify the boundary conditions and the values of a, p, q 5 j ( ~ )  and 
$j(s) for each of the last three cases shown in figure 2, referring to them as cases b,  c 
and d. The first case, a, was treated in part 1, $0 6 and 7. By referring to figure 2 and 
the definition (2.7) of the new variables, we obtain the following (see figure 3). 

Case 6 :  (2.9) holds on the two free streamlines I,+ = - 1, 9" > 0 and ~ = 0, 9" > 0; 

p+ ey" = ~ ( a  + E X " )  +€<(a + ez"), fixed y = q(x) + E<(x) .  

(2.10) holds on the fixed streamline $ = - 1, $" < 0; 
(2.11) holds on the fixed streamline $ = 0, $" < 0; 

a = p = $j(e) = 0, $&) = - 1.  
Case c :  (2.9) holds on the free streamline I,+ = 0, 9" > 0; 

(2.10) holds on the fixed streamline $ = - 1 ; 
(2.11) holds on the fixed streamline $ = 0, 9" < 0; 

a = p = (bj(E) = 0, ?&(E) = - 1, 
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Case d :  (2.9) holds on the free streamlines $ = 0 and $ = - 1. 
(2.10) holds on both sides of the fixed streamline $ = $ j (e ) ,  q5 > q5j(e) = 0, which 
slits the strip - 1 < l/r c 0. See figure 3(d). 

q5j(e) = 0; $.j(e) = - $ O ( E ) ,  a and /3 to be determined. 

In  all cases /3 = ~(a). 
From (2.9) we see that the dimensionless speed of the flow, Idq5"/dz"J, is equal to 

unity on a free streamline a t  y" = -~-'/3. This shows that the typical velocity U is 
just the dimensional velocity a t  this place. In  cases a and b,  the free part of the stream- 
line $ = - 1 starts at  a = /3 = 0,  so U is the flow velocity there. Then, since the flux 
in the stream is hU, the stream width there is practically h, and tends to h as h tends 
to zero. In  cases c and d, U is the flow velocity on a free streamline at the height of 
the point z = a+$?, which corresponds to Z" = 0. 

3. Expansion of boundary conditions and determination of zo 

As the first step in determining the coefficients in (2.8), we substitute (2.8) into 
the boundary conditions (2.9)-(2.11). In  doing so, and from now on, we shall omit 
the double primes and use a prime to denote differentiation. Then we equate coeffi- 
cients of each power of E in the resulting equations. This calculation is carried out in 
part 1, Q 6, for the two conditions (2.9) and (2.10) with a = /3 = 0. The results from 
(2.9) are given by (6.5) and (6.6) of part 1, which are 

x;2 + y;2 = 1, (3.1) 

XAX;+y;yL = Jk, k = 1,2,  ... . (3.2) 

Here Jk, given in (6.6) of part 1, involves x, and yn with n < k. From (2.10) we obtain 
(6.8) of part 1, which is 

Yk-r]'(O)xk = Kk, k = 0, 1, ... . (3.3) 

Again Kk, given in (6.8) of part 1, involves xn and yn with n < k, and KO = 0. 
By using (2.8) in (2.11) and equating coefficients of powers of E we obtain 

(3.5) 
k l  

L k  = Kk+ c 7, {"(o) xnl . . . xnj. 
j=13* nl+ . . . -I- nj = k--j 

We must now find analytic functions zn(q5+i$) defined in the strip - 1 < $ < 0 
satisfying (3.1)-(3.4) on the appropriate b0undaries.t 

In  case b, (3.1) and (3.2) must hold on $ = - 1, q5 > 0 and $ = 0, q5 > 0; (3.3) on 
$ = - 1, 9 < 0 and (3.4) on $ = 0, q4 < 0. In  case c, (3.1) and (3.2) hold on $ = 0, 
q5 > 0; (3.3) on $ = - 1 and (3.4) on $ = 0, q5 < 0. In case d, (3.1) and (3.2) hold on 
@ = 0 and on @ = - 1 while (3.3) holds on both sides of $ = @-j(~),  q5 > q5j(e). 

t For arbitrary a and /3, (3.1)-(3.5) are changed as follows. In (3.1) the right-hand side is 
multiplied by (1  - y/3)-'. In Jk on the right-hand side of (3.2) the factor yj in (6.6) of part 1 is 
multiplied by (1  -y/3)-i-1. In (3.3) and (3.4) 7' and the ~ ( 3 )  in K ,  and L ,  are evaluated at a. 
In (3.5) 5") is evaluated at a. 
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We shall first determine xo = xo + iy, in case b. From the preceding paragraph we 
find that zo must satisfy the following boundary conditions: 

xAz+yA2=l on $ = O ,  $ > O  andon $ = - 1 ,  $ > O ;  (3.6) 

yo = q'(0)xo on $ =  -1, $ < 0;  (3.7) 

yo = ( ( 0 )  xo + c(0) on $ = 0, $ < 0. (3.8) 

In  addition zo must be analytic in the strip 0 > $ > - 1 with zo = 0 a t  $ = 0, $ = - 1. 
A solution of this problem is 

. zo = eio($+i$+i),  where tan8 = ( ( 0 ) .  (3.9) 
In  component form 

xo = $cosO-($+l)sinO, yo = $sin8+($+1)cosB. (3.10) 

It is evident that zo given by (3.9) is analytic in the strip, vanishes at  $ = 0, $ = - 1, 
and satisfies (3.6) and (3.7). To show that it satisfies (3.8) we set $ = 0 in (3.10) and 
write 

yo - ~ ' ( 0 )  xo = 4 sin 8 + cos 8 - tan 8($ cos 8 - sin 8) 

= cos8+tan8sin8 = sece = c(0). (3.11) 

The last equality in (3.1 1 ) follows from the fact that the dimensionless flux in the stream 
is unity and the dimensionless velocity Id$/dzo( is also unity, so the normal width of 
the stream must be unity. This width is just [(O)cosBso c(0) = sec8, which is the 
value we used above. Thus (3.8) is satisfied. 
A completely similar analysis shows that (3.9) or (3.10) is the solution for zo in 

case c. It is also the solution in case a, as (6.10) of part 1 shows. This solution represents 
a stream of constant width in which the flow velocity is uniform. The solution zo for 
case d is more complicated and will be given later. 

4. Determination of zk in case b (channel to jet) 
The coefficient zk, k 2 1, is an analytic function of # + i$ in the strip - 1 < $ < 0. 

On the boundaries of the strip it satisfies the inhomogeneous boundary conditions 
(3.2)-(3.4), as is explained in the paragraph following (3.5). To find zk in case b we 
find it convenient to introduce wk defined by 

wk = f?-iozk, (4.1) 

Reu$= Jk, on + =  0, 4 > 0 and $ =  -1, > 0. (4.2) 

Imw; = Kicos8, on $ = - 1 ,  $ < 0, (4.3) 

Imw;=L;cosB, on $ = O ,  4 x 0 .  (4.4) 

where tan8 = ~ ' ( 0 ) .  In  terms of wk the boundary conditions for case b are for k 2 1: 

In  (4.3) and (4.4) we have differentiated the boundary condition with respect to 4 
in order to obtain conditions involving only w;. 

We must now find a function w; analytic in the strip - 1 < $ < 0 and satisfying 
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(4.2)-(4.4). To do so, we map the strip onto the first quadrant of the plane of a new 
complex variable s defined by 

s = (-;)+, f = $+ill.. 

Then we solve for w; as a function of s. A particular solution is 

(4.5) 

The solution w; is not unique. We can add to it any linear combination of the eigen- 
functions described in appendix A. However, those functions are all singular either 
at z = 0 or at z = 00. Therefore, in matching, their coefficients would be found to 
vanish, so they have been omitted. 

We now use (4.1) to obtain 2; = ei8w;t, with w; given by (4.6). Then we integrate 
with respect to f = $ + i?,h-) recalling that zk = 0 at $ = 0, ?,h- = - 1. In  this way we 
obtain 

Here s is given by (4.5). 
For k = 1, we find from (6.6) of part 1 that J1 = yy0/2, from (6.8) of part 1 that 

K, = ~ " ( 0 )  x8/2 and from (3 .5 )  that L, = ~ " ( 0 )  4 2  + C'(0) xo. Thus K;  = ~ " ( 0 )  x0 c0s8 
and L; = ~ " ( 0 )  xo cos B + g'(0) cos 19. We use these expressions in (4.7) and use the 
results in (4.8). The c integration in (4.8) can then be performed and after some cal- 
culation we obtain the following result for z,, in which s is defined by (4.5): 

- 2 i f  (0) C O S ~  I9 log 

- 2[7"(0) cos219sin19-cos219g'(0)]log 

The asymptotic behaviour of x as $ tends to f 00, obtained from (4.9), is given by 

- 2if(0) C O S ~  I9 (cos 8 log 4 + n sin 8) + 2ni C O S ~  Og'(0)) f + C,+, + O(e+f),  

as # = Ref +m,  (4.10) 
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ei0 + - { y  (log 4 sin 8 + n cos 8) + Zp”(0)  cos2 8( 2neie + n cos 8 + log 4 sin 0) 
4n 

- 4 n ( n i  + log 2 )  COS28C’(O)} ($ + i$) 
+CG+O(e=f),  as Ref=  $ + -a. (4.11) 

Here C&, are constants whose values can be obtained from (4.9), but which we will 
not need. 

5. The zk in case c (channel to wall flow) 
In  case c the boundary conditions on w; are found to be 

Re w; = Jk on $ =  0 ,  $ > 0, (5.1) 

Imw; = Kicos8 on  $ =  -1, (5 .2)  

I m w ~ = L & c o s 6  on $ = O ,  $ < O .  (5.3) 

To find w; we proceed as in $ 4 ,  but now we map the strip onto the second quadrant 
of the s plane by the mapping 

Again we obtain (4.6) for w; and (4.8) for xk ,  but with s given by (5.4) and the following 
values of $ ) k ( u )  and qk(g ) :  

s = (e=f- i )* ,  f =  $+i$. (5.4) 

$ ) k ( u )  = Lk($,o)cos8 = L;(n-’log[1-g2],0)cos8, 

pk(u)  = KL($, - 1 )  cos B = Kk(n-llog [C2- 11, - 1 )  cos 8,  

qk(‘) = Jk($, O) = Jk(n-llOg Ccr2 f O ) ,  0 6 cr < co. (5 .5)  

O < u < l ;  

1 < 0- < co; 

For k = 1 we find 

zl($+i$) = - c 0 ~ 3 8 f ‘ ( O ) { ( $ + i $ ) ~ +  1}+eiecos8 +icos8(C’(o)-~,1’’(O)sin8) “ I i e i D  
2 

eie $+@ 

n 
log [ 1 - i(erf - I)&] df. 

(5.6) 
s - i  

+ - [y sin 8 + cos2 O(r (0 )  - ~ ” ( 0 )  sin O ) ]  

From (5 .6)  we obtain the asymptotic results 

zl($+i$) N ~eie[ysin8+icos38y”(0)]  ($+i$)2 
+ [ i y  - 2i eis(y(0) - ~ ” ( 0 )  sin 8) cos2 81 ($ + i$) 
+C&,+O(e-*rf), as $ = Ref+ co, (5.7) 

cos2 ei8 
Z l ( #  + i$) - 2 (i$’(0)-eiS~(O)) ( $ + i $ ) 2 + x { ~ ( n ~ o s 0 +  21og 2sin8) 

+ (c( 0) - ~ ” ( 0 )  sin 8) (cosz 8 log 1 S)} ($ + i$) + C ,  + O(e.t), 

as $ = R e f +  -co. (5.8) 

The non-uniqueness of w; is considered and clarified in appendix A. The constants 
C$, can be obtained from (5 .6 ) ,  but we shall not need them. 
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6. Matching 
To complete the analysis of the flows in figure 2 we must match each inner expansion 

to the appropriate outer expansions. For ease a this was done in part 1, 0 7. We shall 
now do it for the other cases, using the following form of the matching principle: 

Here IN(ON) is the N +  1 term inner expansion of the N +  1 term outer expansion, 
and ON(IN) is the N + I term outer expansion of the N + 1 term inner expansion. 

In  order to compute IN(ON) we write the N +  1 term outer expansion 0, of 

z(q5 + i.@, E ) .  

Next we write the outer variable 4 + iqk in terms of the inner variable f = q5M + i$ 
thus: #+k@ = &(E)+Ef. Then we expand each term in powers of E and finally 
retain N + 1 terms. When #k(E) = 0, the successive steps are 

Thus 

Now to compute ON(&) we write the N + I term inner expansion of Z [ $ ~ ( E )  + e f ,  €1. 
Then we writefin terms of the outer variable 7 = q5 + i ~ @  in the formf = ~ - 1 [ 7  - q 5 k ( ~ ) ] .  
Next we expand each term for E small and retain N + 1 terms. Finally we rewrite the 
result in terms of the inner variablef. The first steps are as follows, when q5&) = 0: 

N - 1  N - 1  
z(~f, E )  = z(0,O) + S Z " ( ~ ,  8 )  N z (0 ,O)  + E x ~:(f) E" = z (0 ,O)  + E Z ; ( C - ~ T )  en. (6.4) 

n= 0 n= 0 

We recall that z (0 ,O)  = a + is. 
To proceed further we need the expansion of z : ( E - ~ T )  as e tends to zero, or equiva- 

lently the expansion of zi(f) as f tends to infinity. Now within the strip in which 2: 
is defined, Imf is bounded but Ref can tend to & co. As we have shown in cases a, b ,  
and c, and will show in the next section for case d, for n = 0 and n = 1, z:(f) has an 
expansion of the form 

Here the C$j are constants and a is some positive number. This result (6.5) can be 
proved for all n by induction. 

We can now use (6.5) in (6.4) and perform the last steps to obtain 



Slender streams 107 

Thus we have 

ON(IN)  = z(O,O)+ as Ref -+ fa. (6.7) 

We next substitute (6.3) and (6.7) into (6.1), choosing the superscript plus or minus 
according as we are matching at Ref = + co or - 00 in the inner expansion. Then we 
equate coefficients of like powers of B to get 

Z O ( 0 )  = 40, O ) ,  (6.8) 

(6.9) 

By equating coefficients of like powers off in (6.9) we obtain 

z;L5(o) =j!C,.tl,,, n 2 I ,  j = 0, ..., n. (6.10) 

By choosing for n and j the values 0, 1,  2 we obtain from (6.10) the following parti- 

Z p ( 0 )  = cofi; Zl(O) = C&; (6.11), (6.12) 

Z p ( 0 )  = Ch; Z f ) ( O )  = 2Ch. (6.13), (6.14) 

The constants C& are completely determined by each inner expansion. Since we 
have evaluated 20" and z'; explicitly and expanded them for Ref -+ f co, we have shown 
how to obtain C&, C&, C&,, C& and C&. These are just the constants which occur in 
(6.11)-(6.14). In  case a, these C,t, are the coefficients of powers of $+i@ in (6.10), 
(6.21) and (6.22) of part 1. When we use them in (6.11)-(6.14) of this paper we recover 
exactly the matching conditions (7.8) and (7.10) obtained in part 1 in a different way. 

When the outer expansion is that of a wall flow or a channel flow, zo is completely 
determined by specifying zo(0), as we see from equations (4.8) and (5.11) of part 1 
respectively. The matching condition (6.8) yields this value. The second term z1 is 
determined by specifying z,(O), as we see from (4.15) and (4.16) of part 1 for a wall 
flow, and from (5.15) and (5.16) of part 1 for a channel flow. The matching condition 
(6.12) yields z,(O) = ReC& Thus only C& need be found from the inner expansion 
to determine zo and z1 in an adjacent wall flow or channel flow, and only zi is needed for 
this purpose. 

If the outer expansion is that of a jet, we need both zo(0) and zhl)(0) to determine zo, 
and both z,(O) and zll)(O) to determine zl, as we see from part 1, 5 3. Now z,(O) and 26" 

are given by (6.8) and (6.11) in terms of z(0 ,O)  and C&, while z,(O) and zP'(0) are given 
by (6.12) and (6.13) in terms of C& and C&. Thus the constants C& and C& from 2'; 
and C g  from z; are needed to get zo and z1 in a jet. 

For case a (wall flow to jet) we obtain the folIowing values from the equations of 
part 1, C$ from (6.10), C,+, from (6.21) and C s  from (6.22): 

C,$, = ie io ,  C* 01 - - eie, C05 + - - 0, j 2, 

Equations (6.8) and (6.10) are the results of matching. 

cular results: 

\ 
i y e2i0 

Cf - _  (nye~~-icosBlog4[2q"(0)cos20+y]) ,  C& = -- } (6.15) 
l1 - 2n 4 '  

C; = 4y ezio, C; = Beis( tr sin 0 + if'( 0) cos3 0). I 
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For case b (channel flow to jet) we obtain from (3.9) the same values of C& as in 
(6.15). We also obtain the following values of C& from (4.10) and of CG from (4.11): 

C& = (4n)-l eie[y(neie + [n - i log 41 cos 8) 

C,+, = -iye2@/4, 

C; = (4n)-l e'e[y(log 4 sin 8 + n cos 8) + 2f"'O) cos2 8 

CG = eiecos2 8[c(O) - if(0) eie]/2. 

For case c (channel to wall flow) the C$ are still given by (6.15). From (5.7) and 
(5 .8 )  we get the following values of C6: 

C,+, = ay-2ieie~os28[c(O)-r"(O)sin8], 

C,+, = ijeie[y sin 8 + i f ( 0 )  C O S ~  81, 

CG = (2n)-1eie[y(ncos8+ 2log2sin8) + (~'(O)-~"(O)sinO)log 16cos28], 

CG = 4 cos28[ip"(O) - r(0) eie]. 

(6.16) 

(6.17) 

I - 2i7"(0) cos2 8(log 4 cos 8 + n sin 8) + 2niC'(O) cos2 81, 

x (2neie+ n cos 8 + log 4 sin 8)  - &(in + log 2) c(0) cos28, 

1 
By using the appropriate values of C$ in (6.11)-(6.14) we can obtain the initial 

conditions for the first two terms in the two outer expansions of the two flows joined 
by the inner expansion. The C& apply on one side of the junction, where r$ > 0, and 
the C, apply on the other side, where $ < 0. 

The C&. for case d will be given in the next section. When the outer expansion is a 
wall flow or channel flow, only (6.12) is needed, while when it is a jet (6.11)-(6.13) 
are needed. The unused conditions must then be satisfied automatically, so they 
serve as a check on the analysis. 

7. Determination of zo for case d (jet splitting into two wall flows) 
We shall now consider the analytic functions zk($ + i$) in the inner expansion (2.8) 

for case d of a jet hitting a wall and splitting into two wall flows. They are defined in 
the split strip shown in figure 3(d) and satisfy (3.1) or (3.2) on the free boundaries 
and (3.3) on the rigid boundary. However, since the dividing streamline - q P ( s )  de- 
pends upon 8, the Kk in (3.3) are modified for k >, 2 by additional terms involving the 
derivatives of $O(s) a t  B = 0. Those derivatives can be determined by matching the 
resulting solution to the expansion of the incident flow. We shall not determine them 
because we shall consider explicitly only zo and zl. 

= 1 on $ = 0 and on $ = - 1 for all $, and 
yo = $ ( 0 ) x o  on @ = - $ O ( O )  for r$ > 0. Here $ O ( O )  is unknown and must be found as 
part of the solution. This problem for zo and $ O ( O )  is well known and has been solved 
explicitly, since it does not involve gravity and i t  involves a straight boundary. 
From Birkhoff & Zarantonello (1957), pages 35-36, we obtain 

Now zo must satisfy (x:)~+ 

e iO  

n 
zo = - 

+ ~ O g [ - - ] - ~ l ~ g ( ~ ~ - l ) ] ,  E+1 (7 .1)  
5- 1 

(7.2) $yo) = g(l+coss). 
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Here 6 = d ( $ + i $ ) / d z  is the complex velocity, C = cosS and S = sin6 where S is 
the angle between the jet and the tangent to the wall. Thus (7 .1)  gives zo in terms 
of the complex velocity, so, it is a first-order ordinary differential equation for 
zo($+i+). In  (7 .1)  the branch of the logarithm is defined by log z = log I z [  + i  arg z ,  
-n. < argx < 7 ~ .  

(6 .5)  with n = 0. We find the C 6 , j  = 0 , l  to be 
For matching we need the asymptotic form of (7 .1)  for large 

in( 1 + C) - 2SS + ei8 log (2iS) + Ae-i8 + log 

where 

y5 I ) which is given by 

A = - 2nSC - log (2iS) + (1  + C) + (1  - C )  log (eis + I) ,  (7.3) 2 
C- - ei(B-8) 
01 - > 

(1 + C )  (in.-A) + iS(n .4)  + Clog (1 -C) +log 2 -is log 

-$yo) $ < 0, 
C,+, = eie, - $‘J(O) < $ ,< 0, 

(1  - C) A + SS(7r- S) + Clog (1 + C) -log 2- is log 

- 1 < 4 < -$O(O) ,  

C& = - e u ,  

The functions zk, k 2 1, are determined in appendix B. 

- 1 ,< $ < -+o(o) .  

8. Summary 
We shall now summarize our results for the four cases a-d shown in figure 2. For 

simplicity we shall choose the point a + ip, which is a t  the junction in the z plane, to 
be the origin, so we set a = /3 = 0. We shall also set $ j ( ~ )  = 0. For the case of a single 
junction these choices are convenient and involve no loss of generality. However, for 
flows with several junctions it is necessary to consider non-zero values of a, /3 and 
q5j(e). The corresponding formulas can be obt,ained by modifying the present analysis 
slightly. They will be presented elsewhere, when they will be used tJo treat the flow 
shown in figure 4. 

< 0 and one inner ex- 
pansion for \$/ < 1. I n  each of cases a-c there is another outer expansion for $ > 0, 
while in case d there are two such outer expansions. For cases a-c the first outer 
expansion is 

In each of the four cases there is an outer expailsion for 

z = x ~ ( ~ + ~ E ~ ) + ~ ~ ( x ~ ) + ~ [ x ~ ( ~ + ~ E $ ) { ~  + i ? ~ ’ ( ~ ~ ) } + i ~ ( . r , ) ] + O ( ~ ~ ) ,  $ < 0. (8.1) 

I n  case a this represents a wall flow. For it zo(q5) is the solution of (4.8) of part 1 
with ~ ~ ( 0 )  = 0, y = ~ ( r )  is the equation of the wall, rl($) is given by (4.15) of part 1 
with $o = 0, x,(O) = -sinO, where 8 = tan-ly’(O), and 

m o )  = (1 + [ T ’ ( ~ O ) l 2 } *  (1 - Y71(~o)l-*. (8.2) 
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Y 

FIGURE 4. The free streamlines of a rather complicated flow with y = 1 and 8 = 0.2. This flow 
is described at the end of 98. The streamlines were determined by using the method of this 
paper, employing five outer and three inner expansions. Each was matched to the next one, 
starting with the channel flow at the upper left. These expansions describe the entire flow as 
well as the free streamlines. 

I n  cases b and c (8.1) describes a channel flow. Here xo(#) is the solution of (5.11) of 
part 1 with xo(0) = 0, y = ~ ( x )  is the equation of the lower wall of the channel, 
y = ~ ( x )  + s<(x) is the equation of the upper wall and xl(#) is given by (5.15) of part 1 
with #o = 0 and x,(O) = - sin 0. 

In  all three cases the junction flow is given by the inner expansion 

z = eie[# + is$ + is] + s2z1(#/s + ip) + 2 O ( S ~ # ~ - ~ ) ,  I # ]  < 1. (8.3) 
s=o 

Here z1 is given by (6.20) of part 1 in case a, by (4.9) in case b and by (5.6) in case c. 
We note that if # = O(E)  then the error in (8.3) is 0(s3 ) .  

The second outer expansion in cases a and b describes a jet flow and is given by 

z = x o ( # + i e ~ ) + i ( x o t a n ~ - b ~ ~ ) + ~ [ 2 b x o - t a n ~ + i ] y l ( # + i e ~ ) + 0 ( ~ ~ ) ,  # > 0. (8.4) 

Here zo(#) is the real solution of the cubic equation (3.19) of part 1 with a = 0 and 
b = $ysec20 while y1 is given by (3.32) of part 1 with these same values of a and b,  
and with /3 = 8. The constants A ,  and B, in (3.32) are given by (3.34) and (3.35) 
in part 1 with y,(O) = cose and with the following value of y;(O): 

cost e log 4 
y;(o) = Y -sin 28 - [277"(0)cos28+ y ] ,  case a, 

2 2n (8 .5)  

y cos2 e log 4 C O S ~  e 
y;(o) = ?sin 2e - + - [nc(O) - ~"(0) (cos 0 log 4 + 7~ sin e)], case b.  4n 2n 
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FIGURE 5.  Enlarged drawings of the free streamlines near the three junctions in figure 4, showing 
the agreement between the results of the inner and outer expansions. The free streamlines given 
by each inner expansion are shown as dashed curves while those given by the outer expansions 
are shown as solid curves. The agreement between them is even better for smaller values of E .  

In  case c the second outer expansion describes a wall flow which is given by (8.1) for 
# > 0 with all quantities defined as for case a just following that equation. 

Now in case d the first outer expansion represents a jet flow. It is given for 4 < 0 by 
(8.4) with all quantities defined just after (8.4), but with the following changes: The 
angle 0 is replaced by 0 - IS, where IS is the angle between the jet and the wall, 

yl(0) = ImC; 

and yI(0) = Im CG. The constants CG and Cg are given by (7.3) and (B 6). The junc- 
tion flow is given by an expansion of the form (8.3) with the first term replaced by 
ezo(q5/e+if?) with zo given by (7 .1)  and z1 by (4.8) in which p ,  and q1 are defined by 
(B 3) and (B 4). 

Beyond the junction the flow splits into two wall flows which are represented by 
two outer expansions of the form (8.1). One holds for - 1 < @ < - f?O(e) and the 
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other for -$O(E) 6 $ < 0 ,  with @O(O) = t(l fcos8). For the first flow xo(#) is the 
solution of (4.8) of part 1 using the negative value of the square root in that equation 
while for the second flow it is the solution for the positive value of this root. In both 
cases xo(0)  = 0 and y = ~ ( x )  is the equation of the wall. For the first flow the 6 term 
in (8.1) must be multiplied by 1 - while for the second flow it a u s t  be multiplied 
by $O. I n  both cases x1(q5) is given by (4.15) of part 1 and c(xo) by (8.2).  The initial 
values s,(O) in the two cases are 

x,(O) = (l-?,ho)-lRe&,, -1 < $ < -$O (8.7) 

and x,(O) = ($O)-l Re C&, 

The constants C& and t?& are given in (7.3).  
To illustrate the utility of the present method, we have applied it to the compli- 

cated flow shown in figure 4. The stream flows. through a curved channel, emerges 
from the channel and continues along a curved stream bed, flows off the end of the 
bed to become a falling jet, hits a curved surface and splits into two streams which 
flow along the surface in opposite directions. To describe this flow we use a channel 
flow, a channel to wall junction flow, a wall flow, a wall to jet junction flow, a jet flow, 
a jet to two wall flows junction flow and two wall flows. We specify the upstream 
conditions in the channel flow and determine the other flows successively by matching 
each one to the next. I n  doing so we use all three outer expansions and three of the 
four inner expansions, utilizing all but case b ,  the channel to  jet junction flow. The 
details of this calculation, together with several other examples, will be presented 
elsewhere. 

In  figure 4 the free streamlines are shown. In  figure 5 enlargements of the three 
junctions are shown to indicate the agreement between the free streamlines deter- 
mined from adjacent flows. The constants were taken to be y = 1 and e = 0.2. Thus 
the Froude number based on the channel width is e-l = 5. 

- $O < $ < 0. 

This work was supported in part by the Office of Naval Research, the Air Force 
Office of Scientific Research, the National Science Foundation and the Research 
Foundation of the State of New York. 

Appendix A. Eigensolutions 
1 the functions u$ = e-iCz;, which we have determined for the various 

cases, are not defined uniquely by the conditions which we have imposed upon them. 
Therefore, as we shall now show, the homogeneous form of the problem defining each 
u$ possesses non-trivial solutions. We shall present these eigensolutions here, and 
examine their bebaviour. We shall show that each eigensolution is singular either 
a t  a finite point or at q5 = 

This singular behaviour indicates what conditions we should impose upon w; in 
order to obtain a unique solution. By requiring w; to be bounded a t  finite points, we 
exclude the eigenfunctions which become infinite a t  such points. By requiring ui; 
to grow no faster than a power of g5 as g5 tends to & co, we exclude the eigenfunctions 
which are singular a t  either +co, since they grow exponentially. In  this way we 
exclude all the eigenfunctions and obtain a unique solution. That these conditions 

For k 

00. 
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are the proper ones to impose is verified by the fact that, the resulting inner expansion 
matches the two adjacent outer expansions. 

Case a (wall flow to jet). In  the plane of s = s1 + is, an eigensolution for w; = ei%; 
in case a is any function g(s) analytic in the first quadrant and satisfying there Dhe 
boundary conditions 

R e g = O  on s , = O ,  I m g =  0 on s1 = 0. (A 1) 

g,(s) = ig2n+l, n = 0, 1, ..., (A 2) 

(A 3) 

It is easy to verify that the eigenfunctions are 

h,(s) i= i [ ( ~ -  1)-2n-l+ (s+ 1)-2"-1], = O , 1 , 2 ,  .. . . 
The corresponding eigenfunctions for w; in the strip - 1 < $ < 0 of the plane of 

f = q5+i@ are obtained from (A 2) and (A 3) by setting s = (1  + e-"f)$. Upon inte- 
grating eis w;( f) we obtain the following eigensolutions for zk: 

$+{$ 
Hn(q5+i@) = ieio 1 {[( l+e-rt)+-  11-2n-1+[(1+e-n~)$+ 1]-2n+l}df, n = 0, 1,  ... . 

-i 
(A 5 )  

From (A 2) we see that, for n 2 0, g,(s) becomes infinite as s -+ co, corresponding to 
upstream infinity in the flow. Similarly, (A 4) shows that Gn grows like e++f)"$ as 
q5 tends to - co. We also see that, for n < 0, gn(s) becomes infinite at  s = 0, correspond- 
ing to the point where the flow leaves the wall. The corresponding G, given by (A 4) 
becomes infinite a t  q5 = 0,  $ = - 1.  The function h, given by (A 3) is singular at  
s = 1, which corresponds to a point infinitely far downstream, and H,, grows expo- 
nentially as q5 + +a. This singular behaviour shows that in this case all the eigen- 
functions are excluded by the boundedness and growth conditions presented above. 

Case b (channel to jet). The eigensolutions in case b in the s plane are 

g,(s) = isZn+l, n = 0, k 1, ..., 

h,(s) = i[(s- 1)-2n-1+(s+ 1)-2n-1], n = 0 , 1 ,  ..., 

k,(s) = i[(s - i)-2n-1 + (s + i)-2n-1], n = 0, 1, . . . . 

(A 6) 

(A 7)  

(A 8) 

For n 2 0, g,(s) is singular at  s = co, which corresponds to the upper edge of the 
channel. For n < 0, g, is singular a t  s = 0, which corresponds to the lower edge of 
the channel. For n 2 0,  h, is singular at s = 1, which corresponds to downstream 
infinity. For n 2 0,  k, is singular a t  s = i, which corresponds to upstream infinity. 

The corresponding eigenfunctions for e-iezk are obtained by expressing s in terms of 
f by (4.5) in (A 6)-(A 8) and then integrating with respect to f from - i to q5 + i$. The 
resulting eigenfunctions are singular at the points corresponding to the singularities 
of the integrands, in such a way that they are excluded by the preceding conditions. 

Case c (channel to wall flow). The eigenfunctions for w; in case c, are, in the f plane, 

g,(f) = i(enf- I),+*, n = 0, 1,  ..., (A 9) 

h,(f) = i{[(en'- 1)4-i]-h-1+ [(d- 1)4+i]-2n-1}, n = 0 , 1 ,  ... . (A 10)  
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The g ,  with n 2 0 are singular as Ref -+ 00, i.e. far downstream. Those g ,  with n < 0 
are singular at the upper edge of the channel, f = 0. The h,, n 2 0, are singular as 
Ref -+ - co, i.e. far upstream. The corresponding eigenfunctions for e-iszk, obtained 
by integrating g ,  and h, as in case b, are also singular where the integrands are singu- 
lar, and are also excluded by the preceding conditions. 

Case d (jet hitting a wall). The eigenfunctions for case d, in the s plane, are given 
by (A 6), (A 7) and (A 8) with s & i replaced by s f CZi where CZ = [$O/( 1 - $O)]*. For 
n 2 0, gn is singular at s = 00, i.e. at downstream infinity where - 1 < $ < - $0. 

For n < 0, g, is singular a t  s = 0, i.e. at downstream infinity in the interval 

-$O < $ < 0. 

For n 2 0, h, is singular a t  s = 1, which corresponds to upstream infinity. For n >, 0, 
ka is singular at s = Czi, which is the stagnation point. 

The eigenfunction G,($ + i$) of z k  is obtained from gn given by (A 6) via the integral 

G,($ + i$) = i eie s2n+lC--ldf, n = 0, & 1, .. . . 

Here I: = d($ + i$)/dz, where z is given by (7.1 ), and s is determined as a function off 
by (B 1) and (B 2), in which u is a parameter. The eigenfunctions corresponding to 
(A 7) and (A 8) are obtained by replacing g, by h, or kn in (A 11). All these eigen- 
functions have singularities which are not allowed by the preceding conditions. 

Appendix B. Calculation of z k ,  k 2 1, for case d 

The analytic function z k ,  k 2 1, for case d satisfies (3.2) on the free boundaries 
@ = 0 and $ = - 1, and (3.3) on the rigid boundary $ = - $ O ( O ) ,  $ > 0. To find it 
we introduce the new analytic function w k  = e-i8i+L. For i t  the boundary conditions 
become Re wk = Jk on $ = 0 and $ = - 1, and Im wk = (xi)-1 cgs2 OK; on the two 
sides of the slit $ = - $ O ( O ) ,  $ > 0. To solve for w k  we map the slit strip - 1 < $ < 0 
on the first quadrant of the s-plane by the two mappings 

s = [(u- I)/&+ I)]*. (B 2) 

Here and below $O denotes $ O ( O ) .  

As a consequence of this mapping, Rew, is specified along the positive real axis 
and Im w k  is specified along the positive imaginary axis of the s plane. This problem 
can be solved with the result that w k  is given by the right side of (4.6). Then zk is 
given by (4.8) in which s is defined in terms off = $ + i$ by (B 1) and (B 2),  and with 
the factor t-l(f) inserted before the second integral. The functions p k ( a )  and qk(a) 
in the integrand are defined as follows with $O = ($O)-: 

(?)‘<a. ( B 3 )  
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For 0 < cr < [( 1 - $0)i40]4, pk(u)  is given by (B 3) with ($O)- replaced by ($O)+. 

-(1-$0)1og(l-a2)(1-$0) 

(B 4) 
For cr > 1, pk(cr) is given by (B 4) with $ = 0 replaced by $ = - 1.  

For k = 1, J1 and K ,  are given below (4.8). Then the coefficients in the asymptotic 
form (6.5) of x1 can be found by using these values and the above formulas in (4.8). 
In  particular we find 

c- 12 - - -$iye2i(e-8) (B 5) 

+sin (0 - 6) [log 2 - $O(i + log ( 2 $ O ) )  + ($O - 1) log 2( 1 - $O)]). (B 6) 

In  (B 6) C& is given by (7.3) and i&(cr) is defined by 

ijl(cr) = ql(cr)--  -sin(0-6)[log[i-cr21 -$Ologcr2--log2] 
2 ? l  

-cos(0-6)H(cr - l )+ImC~ . (B 7) 

Here H ( z )  = 1 for z > 0 and H ( x )  = 0 for x < 0. We note that &(cr) = O( 11 - crl) for 
(T near 1, so the integral in (B 7) is finite. 

r 
I 
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